Qualifying Exam—Numerical ODE 05/2022

Show intermediate results at all steps!

1. For ODE & = f(z) with f satifying Lipshcitz condition with bounded 2nd order derivative,
prove the global convergence of the Euler scheme::

Tpr1 = Tn + kf(z).



2. Derive the absolute stability region for the backward Euler scheme.



3. Consider the homogeneous ODE u(t) = f(u), show that the Local Truncation Error of
the following midpoint method is of order O(k?):

Ut =U" + kf (U" + %kf(U”)) :



4. Tlustrate stability of the Trapezoidal method for the Harmonic oscillator:
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5. Consider the Hamiltonian dynamics:
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Show that the implicit Euler-B scheme is symplectic

qn+1 _ qn 4 Atva(q",pn+1), pn+1 — pn o Atqu(qn’pn—&—l)‘



6. Show that the implicit mid-point method
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WhereJ:(_I 0

), is time reversible for solving Hamiltonian dynamics (1).



7. Formulate the Stomer-Verlet algorithm for equation (1) when H is separable such that
H =T(p) + V(q) and show its Leap-frog formulation.



